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The theory of magnetic-field dependence of chemical reaction rates at high temperatures is discussed.
It is shown that in the zero-order approximation in the parameter (uH /kT)* this dependence can be
significant. It depends crucially on the nature of the reaction and the way particles are created.

PACS number(s): 05.20.—y, 82.20.—w

I. INTRODUCTION

In this paper we shall consider the magnetic-field
dependence of monomolecular 4 + 4 —C and bimolecu-
lar 4 +B —C reactions at high temperature. Suppose
the reacting particles have spins. We would like to ad-
dress the following question: is it possible to have
significant magnetic-field dependence of the recombina-
tion rate in the zero-order approximation of parameter
(uH /kT)? << 1, when the spin polarization of reagents is
negligible and does not affect the rate of the reaction?
Here H is the magnetic field, u is the Bohr magneton, and
T is the temperature. We show below that correlation
effects can lead to a significant magnetic-field dependence
of the recombination rate.

In the following we will investigate the case where the
product of recombination C does not have spin, and only
pairs of particles in the singlet states can recombine in
the course of elementary process. In the ‘“mean-field” ap-
proximation, where the spatial correlation between
reagents is neglected, there is no significant H depen-
dence of the recombination rate for (uH /kT)*<<1.
However, in the course of recombination spatial correla-
tions between reacting particles are induced. That is,
nearby singlet pairs recombine quickly, while distant
singlet pairs survive recombination more effectively. This
type of correlation leads to the deviation from the
“mean-field” approximation and renormalizes the reac-
tion rate. Evaluation of such corrections to the recom-
bination rate is a part of the general problem of calcula-
tion of the fluctuational corrections to hydrodynamic
equations Refs. [1-4]. Magnetic field can affect these
corrections, resulting in a significant H dependence of
recombination rate.

We consider the following model: reacting particles
can diffuse in space with diffusion coefficient D and un-
dergo the processes of spin relaxation. Recombination
can occur only when the reacting particles are situated in
the same point and form a singlet state. The correlation
function of recombining particles and corresponding
corrections to the recombination rate turn out to be
strongly dependent on the decay rate of the singlet state,
which in turn depends on the magnetic field. There are
two sources for such a decay: (1) spin relaxation with
characteristic time 7,(H) and (2) a difference in the g fac-
tors of the A and B particles. Because of the latter, the
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singlet state is no longer an eigenstate in the presence of
magnetic field, and will mix with the triplet state. Both
mechanisms provide the H dependence of the recombina-
tion rate. The significance of the second mechanism was
discussed in Refs. [5-7] where one can also find reviews of
both experimental and theoretical situations for the H
dependence of the chemical reaction rate.

We arrange our paper as follows. In Sec. IT we discuss
correlational corrections to the recombination rate of
spinless particles, and then extend these calculations to
find the H dependence of the recombination rate of parti-
cles with spins. We show that the magnitude of-the H-
dependent part of the recombination rate is crucially
dependent on the way the particles are created. It is
maximized when particles with different spins are created
at uncorrelated locations, and is absent when singlet pairs
are created at the same location (for example, due to the
photodissociation of C particles). The H dependence of
the recombination rate can be a nonmonotonic function.

In Sec. III, we consider the H dependence of the
recombination rate in a nonstationary case. We show
that at initial stages of recombination the H-dependent
corrections have the same form for monomolecular and
bimolecular reactions, and for both cases the corrections
can be large. At long times the H-dependent corrections
are very small in the case of bimolecular reactions and
can be relatively large in the case of monomolecular reac-
tions. In Sec. IV we discuss our results.

II. MAGNETIC-FIELD DEPENDENCE
OF CHEMICAL REACTION RATES
IN STATIONARY CASE

In this section we discuss the H dependence of the
recombination rate in the stationary case.

First we start with a discussion of the irreversible bi-
molecular recombination of spinless particles 4 +B —C.
In the “mean-field” approximation, when the spatial
correlation between A and B particles is neglected, the
reaction can be described by the equation

,n(t)=I—yon(t)? (1)
which, in the stationary case, gives
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(2)

Here n(1)={(n,(r,t))=(ng(r,t)) is the average
concentration of reacting particles. I=(I,(r,t))
=(Ig(r,t)) are average intensities for the creation of 4
and B particles; ¥ is the recombination constant, which
in the gas approximation can be estimated as y,~DR,,
D is the diffusion coefficient, and R, is the recombination
radius.

Elementary acts of reactions take place when reagents
are situated at the same point, which means that in the
course of recombination close pairs of reagents are elim-
inated and spatial correlation of distribution of reagents
is produced [8-11]. This correlation changes the recom-
bination rate and, as we shall see, leads to significant H
dependence of the recombination rate in the case of parti-
cles with spins. We start with the equations

9,n4(r,t)=—vyon (r,t)ng(r,t)+DAn 4(r,¢)+1 4(r,t),
(3)
o,ng(r,t)=—yon (r,t)ng(r,t)+DAng(r,t)+1g(r,t),

where D is assumed to be equal for 4 and B particles,
I,(r,t)=1+8I,(r,t), Ig(r,t)=1+08Ig(r,t), of which
the second terms are random creation sources of A4 (B)
species particles. We assume that

(81 4p)(1,0)8I 4(p)(1',t")) =I8(r—1")8(t —1') ,
(81 4(r,2)8Ig(r',t")) =K 4p(r—1',1)8(¢ —1") .

4)

Above, K ,p(r—r')=0 would mean that 4 and B parti-
cles are created at uncorrelated locations, while
K .5 =I8(r—r’) would mean the creation of pairs of A4
and B particles at the same location. Using perturbation
theory for Egs. (3) and (4), after averaging we obtain

3,n(t)=—yon(t)’+g 5(R,2),
a,gAA(R,t)—DAgAA(R,t)

+2'}/0n (t)[gAA(R,t)+gAB(R,t)]:O s
(5)
3,8 ,5(R,1)—DAg .5(R, 1)

+2yon(0)[g 45 (R,1)+g 4 4(R,1)]
=K 3R, t)—yn(t)¥(r—r')

Here g,,(R,1)=(8n4(r,t)8ng(r',t)), g p(R,t)
=(8n 4(r,t)dngx(r',t)), with R=r—r'. Equation (5)
holds as long as corrections to recombination rate are
small, which means that n(¢)*>>g , 3(0,7). Thus in the
case K 4,5 =0, we have a source for the correlation func-
tion on the right-hand side of Eq. (5), which is propor-
tional to the unperturbed recombination rate. On the
other hand, if 4 and B particles are created at the same
location and K 45 =1I18(r—r’), the source on the right-
hand side of Eq. (5) is identically zero.

We would like to note the direct analogy between this
source and the corresponding source term for the non-
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equilibrium correlation function of the distribution func-
tion. (See Refs. [13] and [14].)

The boundary conditions for Eq. (5) are that there are
zero fluxes of A and B particles through the sample
boundary S:

n-Vg, (r—r,1),=0,

(6)
n-Vg gz(r—r',1)|,=0.
In the stationary case, from Eq. (5) we find
1 K ,5(Q)
g45(0)=—yn’3 1— . (7)
Q DQ2 ?’0”2

Here K ,5(Q) is the Fourier transform of K ,5(R). nis
the vecto vector normal to the boundary. In the case
when K 45(R,1)=0, the correction to the recombination
rate has the form

I
Sy =——
Yo <n>2 Yo

— 2 1
'yo% PQ (8)

This expression is similar to that for the weak-
localization correction to conductivity of disordered met-
als at low temperatures [15,16]. It is important that there
is no cutoff in the denominator of Eq. (8), which is intrin-
sically connected with recombination.

Similar to weak localization, in the three-dimensional
case d =3. Equation (8) is determined by large [Q|~/ "',
where Egs. (5) are actually inapplicable. Here /=V'3Dr
is the mean free path, and 7 is the scattering mean free
time of the particles. However, we will show below that
the magnetic-field dependence of 8y,(H) is completely
determined by small |Q|. In one and two dimensions Eq.
(8) diverges at small |Q|, and we introduce a cutoff length
L, the physical origin of which will be discussed below.
As a result we obtain the correction to the recombination
rate due to correlation:

~1, d=3
87 Yo [ L,
—_—=—— | X —In— —
" DI L In R d=2. (9)
Lyl
X—2 d=1
L.L,

The definitions for the d =1, 2, and 3 cases are the
same as in the theory of weak localization [15,16]: d =1
corresponds to L,, L, <<L,,L, >>L,; d =2 corresponds
to L,<<Lgy,L,,L,>>L,; and d =3 corresponds to
L,,L, L,>L,.

Equations (8) and (9) are valid as long as corrections to
the recombination rate are small. But the corresponding
expressions for d =1 and 2 diverge when L, goes to
infinity. This divergency is a direct consequence of the
assumption about absence of correlation between A and
B sources: K ,5;=0. Furthermore, at Ly=c in the
d =1 and 2 cases the stationary solution of the problem
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does not exist [11]. A qualitative explanation of this fact
is as follows: the numbers of 4 and B particles created
per unit time in a finite volume are different, and they can
disappear from the volume due to recombination only by
pairs which conserve the difference of the numbers of A4
and B particles. The difference between the total num-
bers of A and B particles created in a region with a size
L, during a time interval ¢, is of the order of
Vv 1ty / (Lo)d. This difference can be eliminated only by
diffusion of A and B particles over a distance of the order
of L, which takes time t,=(L,)?/D. As a result,

n(t)~8én,~dng~V I(Ly? D', (10)

Equation (10) shows that at d <2, 8n , increases with
L, which means that at low dimensions diffusion is not
effective enough to redistribute the excess of the particles
all over the sample volume. As a result, the concentra-
tions of particles grow with time, and a stationary solu-
tion of the problem in the infinite sample is absent. The
physical reason for this is that the segregation of 4 and B
particles prevents their recombination.

In a real situation the 4 and B particles can be created
in space as correlated pairs (correlation length L, has a
finite value). The cutoff length L, in Eq. (9) is the charac-
teristic size of a volume where the total numbers of creat-
ed A and B particles are the same. In this case, at small
enough L, Egs. (8) and (9) are valid. At sufficiently large

a,ggs(R,t)_DAgss(R,t)+‘}/0n(t)[gss(R,t)+gTT(R,t)]_

9,87r(R,t)—=Ddgrr tvyon (1)3[gss(R, 1) +grr(R, )]~

In the case pH <<kT, gr 1 (R,2)=gr_r_(R,?)
=gr,r,(R;t), and  we grr(R,t)
=gr_r_(R,t)tgr r (Rt )tgr r,(R,2). Equation

(12) differs from Eq. (5) by the term corresponding to spin
relaxation. We assume the conventional magnetic-field
dependence of the spin relaxation time (see, for example,
Ref. [17)):

introduce

T (H)=7,(0)[ 1+ (7ouH )*] . (13)

Here 7,(0) is the spin-relaxation time in the absence of
magnetic field, and 7, is the correlation time for the ran-
dom magnetic field which causes the relaxation. Equa-
tion (12) holds as long as the correlational corrections to
the recombination rate are small. In the stationary case,
similar to Eq. (8), we have
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L, we have Eq. (10), which is strongly dependent on the
cutoff length L.

As we have noticed, in the case when A4 and B particles
are created by pairs at the same location, the corrections
to the recombination rate considered above are identical-
ly zero due to the exact cancellation between correlations
created by recombination and by creation of particles.

In the case of monomolecular reaction 4 + 4 —C,
there are no corrections to recombination constant.

Let us now turn to the magnetic-field dependence of
the reaction rate. Suppose A and B particles have spins
1, and particle C does not have spin, so only the recom-
bination of a singlet pair of A and B particles is possible.
(A generalization to larger spins is straightforward.) Let
us start with the case of the monomolecular reaction
A+ A—C. In this case we have to substitute the
singlet-singlet component p(r—r';¢) of two-particle den-
sity matrix p,s(r—r';1) instead of g 45 in the first of Egs.
(5). We introduce

8ap(R,1)=pg(R,1)—1n (1)8(R)8,5 (11

as the correlational part of the density matrix p,g arising
from recombination. Here a and B are the spin indexes
corresponding to the singlet state S and triplet states
Ty, T, ,T_, which corresponds to the 0, +1, —1 projec-
tion of the total spin on the z axis. The equations for di-
agonal elements of the density matrix are

3gss(R,t)_gTT(Ryt)

=—yn(t?8(R),
TS
(12)
gTT(R,t)_3gss(R,t) =0
TJ
—
Sy (H)
re =Y0 "% 2 1—1 ) (4
Yo Q DQ +4Ts (H)

For d =3, Eq. (14) diverges at large Q (or small dis-
tances) just like Eq. (8), which makes it inapplicable be-
cause of the violation of the diffusion approximation. It
is important, however, that as in the theory of weak lo-
calization [15,16] the magnetic-field dependence of the
recombination rate can be calculated in the diffusion ap-
proximation in any dimension. Indeed,

S8y o(H)—8y(0)
Yo

S 1 B 1
%S | DQ+4r710)  DQP+4r U(H)

(15)
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is determined by small Q. As a result we find

Yo
217_2 }/O _ }/0 , d=3
DV'Dr(H) DV Dr/(0)
_3 Yo TS(O) _
“d XL, Mo my 472
7~ v/ Dr(0) =/ DrH)], d=1
DL.L, ; T
(16)

In d =3 this correction is small but important, in that it
can be much larger than the parameter (uH /KT)*. In
the one- and two-dimensional cases the corrections de-
scribed by Eq. (16) diverge as 7, goes to infinity. The
reason for this is exactly the same as that which leads to
the corresponding divergency in Eq. (8).

As we have mentioned already, in this case Eq. (12)
cannot be applied to describe the situation. However, it
is possible to estimate H dependences of the recombina-
tion rate by substituting L, for /D7, in Eq. (10):

DL, s
r(H) > O
Sy (H)~ | % 7
Yo ~
) 17)
DL,L,————, d=1
vV/'Dr,(H)

We see that in this regime the H dependence is very
significant and does not depend on y,, which is a conse-
quence of the fact that the segregation of particles with
different spins dominates the dynamics of the system.

Let us now turn to the case of bimolecular reactions
A +B—C, which we will describe with the help of the
equations for the density matrix:

3,n()=—7y,o{n(1)?+4g 4p,55(R, 1)} ,
8ij;1,s(Rs1)

afglj,TOS(R’t)_DAgU,TOS(R’t)+ TS(H)

+ioy(g;,ss(R 1) —gy; 7,7, (R,1(1—8,)=0, (18)
atgij;aa(R’t)_DAgij;aa(R’t)+2ingij;TOS(R’t)( 1 —8‘] )(Sas+8aT0)

|

L $8jaa R D) ™ FBiipp
7,(H)

+70n {28i;0a R 1) =2 (1—8) 8ijiaa Ry 1)~ 2 8ijrpp(R, 1)
J B

—yon (1)*8(R)(1—3;;) .

Here i,j labels particles 4, B; a,B=S; Ty,T_,T,, g;;,,p(R,?) is the density-matrix element of the reagent i,j with
spin states a,f; g;. T, s(R, 1) are the off-diagonal matrix elements, which describe the mixture of singlet and triplet states

in the magnetic field, provided the 4 and B particles have different g factors; wy =(g, —g,)uH is the difference of Lar-
mor frequencies of the spins of 4 and B reagents, and 3 is the summation over the spin states excluding the a state.

In the stationary case we obtain from Eq. (18) the H-dependent part of the correction to the chemical reaction rate,
which differs from Eq. (17) only by the term arising from the difference of the g factor of reagent 4 and B:

y3 2 1 DQ*+7, \(H)
5?’;1'“5?’0:?2 DO* 47! B 2, —1 - 21 -1 2 —1 2 (19)
< | DQ*+770) DQ*+r (H) [DQ+7; (H)[DQ*+4r '(H)]+20}
As a result we have
Yo 4 Yo 5 Yo Cd=3
DV D7 (H) pV'DVwy?+rH) DVD7,(0)
57 =870(0) 7o | 70 % " 100
_— X +1 , d=2 . 20
Yo 6 oL, | " op*+r,(H)? N (H) 29
Y0 (2y/Dr(0)~V DrlH) — (Dl +r,(HP]2)12), d=1
DL.L,
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An interesting feature of Eq. (20) is that, because @ is
proportional to H while [7,(H)™!] decreases with H, a
nonmonotonic magnetic-field dependence of 6y (H) may
be possible.

As we have noted above, the origin of Eq. (20) is very
similar to the corresponding equation for the weak-
localization corrections to the conductivity [15,16]. The
physical reason for this is the following: the first scatter-
ing of particles 4 and B creates spin correlation between
the particles. The particles then diffuse and the recom-
bination probability at their second scattering depends on
the spin correlation. This qualitative picture of the H
dependence of the recombination rate has been discussed
in many papers (see, for example, Refs. [5-7]). We would
like to stress, however, that Eq. (19) holds only for the
case when K ,5 =0, while in the K ,z(R,t)=I8(R) the
corrections are identically zero. This corresponds to the
obvious fact that the change in the mass action law is
governed by parameter (uH /kT )%

It is important that as long as 7,>>7 and
(g, —8&, )uH7t<<1, the magnetic-field-dependent part of
87, is determined by small Q for all dimensions, which
means that all results can be obtained in the diffusion ap-
proximation. The definition of dimensionality is the same
as described above with the substitution L, for
min(L,,V/ DT,).

As we have discussed above, in the case of a bimolecu-
lar reaction in low dimensions d <2 and at large L, the
key feature is the segregation of particles 4 and B.
Therefore spin dynamics in this case does not play a
significant role in reaction kinetics, and the magnetic-
field dependence of the recombination rate is small even
compared with perturbation result Eq. (16). Thus we see
a dramatic difference between monomolecular and bi-
molecular reactions in this regime. We will see that the
same reasoning leads to a similar conclusion in the non-
stationary case.

III. THE H DEPENDENCE OF THE REACTION RATES
IN THE NONSTATIONARY CASE

In this section, we discuss the nonstationary situation
where one prepares uniform and uncorrelated distribu-
tions of A4 and B particles and then allows the recombina-
tion to start at £ =0. Such a situation can arise, for ex-
ample, when the source of dissociation of particles C into
A and B is suddenly switched off at the time ¢ =0.

As an introduction, we begin with the recombination
of spinless particles. In this case the initial stage of
recombination basically follows the ‘“mean-field”” solution
Eq. (1):

n(n=—">"—— @1)
1+yon(0) ’
with small correlation corrections.

Zeldovich and Ovchinnicov [8] showed that for the bi-
molecular reaction 4 +B—C, at t > T,o (we will give
the definition of T, below) this law changes to

n(t)~r—94 . (22)

The reason for this is the existence of initial spatial
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fluctuations of the densities of particles 4 and B. For
large length and time scales the recombination is much
quicker than the diffusion. As a result, at ¢ ~ T, the
recombination leaves “lakes” of segregated A and B par-
ticles with densities of the order of the initial fluctuations.
Further on the recombination process is limited by the
diffusion between such lakes, whose size depends on time.
This leads to Eq. (22). The phenomenon of the segrega-
tion of particles in the course of recombination was inves-
tigated in many papers (see Refs. [8—12]), where Eq. (24)
was confirmed. In this paper we restrict ourselves to a
calculation of corrections to the recombination rate in
the framework of the perturbation theory, which means
the opposite limit, when the effects of particles’ segrega-
tion are small. T,, is the time such that
n(Tz0) ~8 45(0; T o).

Using perturbation theory, from Eq. (5) one gets
8 45(0;1)~n(0)/(Dt)*’?, with n (0) being the initial con-
centration of the reagent. Together with Eq. (21), it leads
to the estimate

1/(4—d)
Dd
T,,={—F——— , (23)
% | véanio?
where y is
Yoo d=3
Yo 4= (24)
Yod = L,
Yo
, d=1.
L.L,

In the case of monomolecular reaction 4 + 4 —C, Eq.
(21) holds at arbitrary large time, and the Zeldovich-
Ovchinnicov regime is not realized.

Let us now consider the magnetic-field dependence of
concentration n (H,t).

First, let us note that, at an asymptotically large time
the result is different for monomolecular and bimolecular
reactions. That is, the kinetics of a bimolecular reaction
in this case is determined by the segregation of 4 and B
particles, and does not depend on details of the elementa-
ry process of recombination. This means that the
magnetic-field dependence of the reaction rate in this case
is very small. On the other hand, we will show that a
monomolecular reaction can be described at long times
by a ‘“mean-field” solution Eq. (21) with the same
magnetic-field dependence of y, [Eq. (16)] as in the sta-
tionary case,

At an intermediate observation time ¢ the magnetic-
field dependence of the recombination rate in the nonsta-
tionary case depends on the ratio between parameters
7,0), [75 A H)+0gy*] 12, Ty, and t.

It is clear from previous discussion that in the case in
which all these parameters are of the same order, the
segregation of the particles with different spins is also of
the order of unity and 7 (H)—r(0)~(0). In the case of
a bimolecular reaction it is a maximally possible change
of the reaction rate by the magnetic field. In the case of a
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monomolecular reaction the effect of the magnetic field
can be much larger. Consider, for example, the situation
when 7,(H)>>T,>>7,(0). At H=0 and t > 7,(0), the
reaction follows the mean field Eq. (21), while in the pres-
ence of the magnetic field the Zeldovich-Ovchinnikov re-
gime [Eq. (22)] takes place in the time interval
T,(H)>t>T,;5. However, the description of this case is
beyond the scope of this paper because, as we have men-
tioned, Egs. (12) and (18) can be applied only to the case
in which the correction to the rate is small.
Using Eq. (18), one obtains

d,n(t;H)=—yo(t;H)n(t; H)*,

gAB-ss(l',I',t;H)

(t;H)= I+ —, (25)
Yo Yo n(t;H)?
gAB;SS(r,r,t;H)=—yofn(t’;H)ZG(r,r;t,t';H)dt' ,
where
G(r,r';t,t";H)

t—t' (r—r')? 1
~e — — (26
"p' 7 (H) D(t—1) [[D(1—1)]"" )

is the Green function of Eq. (18). Such a form of the
Green’s function is valid as far as 7,(H) "' >> 0.

Equations (25) and (26) can be applied both to
monomolecular and bimolecular reactions, provided
7. '<<wp. In the opposite case 7, should be replaced by
wg. There are two significant contributions in the in-
tegral Eq. (25). The first one is due to ¢’, which is close to
t. At long times (in the case of monomolecular reactions)
this contribution dominates and we arrive at the solution
Eq. (21) with the H-dependent y, of the form given by
Eq. (16). The second contribution, which corresponds to
Zeldovich-Ovchinnikov  corrections, is from ¢’
~(704n(0))"!. When t>1/y4n(0), we can express this
term in the following form:

(4—d)/2

exp

T2o . (H) ]

—exp (27)

7,(0)

Equation (27) holds for ¢ <<t,5. The relation between
Egs. (27) and (20) depends on the parameters mentioned
above.

IV. CONCLUSION

We have shown that in both stationary and nonstation-
ary cases the magnetic-field corrections to chemical reac-
tion rates can be much larger than those which are
governed by the parameter (uH /kT)?. Moreover, in
some cases they can be of the order of, and even larger
than, unity.

In the stationary case the corrections are maximal
when particles with different spins are created at uncorre-
lated locations. In three dimensions the relative ampli-
tude of the corrections is smaller than unity, but it is
enhanced in the low-dimensional cases d =1 and 2, where
in principle it could be larger than unity.

In cases when the particles are created in a stationary
fashion by pairs at the same locations, the H dependence
of the rate considered above is absent.

In the nonstationary case at t < T, corrections due to
the magnetic field are of the same order for monomolecu-
lar and bimolecular reactions. Their relative amplitude
depends on the parameters ¢ /T,q, and 7,/T;, and can
be of the order of unity.

The characteristic magnetic field of the problem, where
the corrections become significant, is determined by the
parameters pHryand (g, —g, )uHr,.

In conclusion, we would like to mention another possi-
ble mechanism for the H dependence of reaction rates:
the H dependence of the diffusion coefficient D (H) (or
scattering mean free path /) [18-20], which enters the ex-
pression for the recombination rate through Egs. (8) and
(9). Such a dependence (which is called the Zenftleben
effect) arises in the case when the mean free path / de-
pends on the angle between the directions of particle ve-
locity and spin, /=I[,[1+T(v-S/vS)]. The estimate
[18,20] [D(H)—D(0)]/D(0)~T?[1+(uHT)*] shows
that this contribution usually is small compared with that
considered above, because I' is of relativistic origin.
However, we would like to stress that in cases when the
recombination rate is significantly suppressed due to the
segregation of 4 and B particles, it is this mechanism
which determines the H dependence of the recombination
rates. Moreover, these corrections can oscillate as a
function of the magnetic field due to magnetic-field-
mediated intersections of Zeeman levels in some mole-
cules [19,20].
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